
Power Consumption Analysis of the BBC micro:bit

Matthew Frost

January 17, 2018

Abstract

This report analyses the power consumption of three
APIs for the micro:bit by developing and executing a
series of tasks that test the main components of the
micro:bit.

The aim of this report is to discover areas of im-
provement for particular software components, and
to benchmark the performance of the hardware when
used by each language in terms of power consump-
tion, for future product and language development.

This report concludes that the high level nature of
some languages that support the micro:bit come at
a cost of high power consumption. Moreover, sug-
gesting some improvements and considerations that
could be made for the languages under test and spe-
cific power 'power-hungry' hardware.

Introduction

The micro:bit is an embedded system primarily used
for computer education. Since its launch in March
2016, it has seen global success and has recently
launched in India. A key aspect of an educational
tools success is it’s ease of use, and as the micro:bit
was originally targeted at school children in the UK,
this aspect is more significant than ever.

An element that indirectly impacts ease of use is
power consumption. Although the micro:bit can be
mains powered via USB or pins, it can often be used
in projects where electricity is more finite, such as a
radio controlled car making use of the stock AAA bat-
tery pack. Alternatively, the micro:bit can be pow-
ered by solar, which although not finite, desires a
more cautions power consumption.

Often, high power consumption can generally be at-
tributed to inefficient programming by developers,
who can hide behind the blessings of Moore’s law.
However, for devices with with a finite power source
this is often an area of focus and cannot be over-
looked.

This report abstracts away from the 'lazy developer',
as this is an inevitability given the micro:bits aver-
age use case (education), and can only be compen-
sated by low powered; hardware, drivers (microbit-
dal) and runtime environments including interactive
prompts (MicroPythons REPL). Therefore, those as-
pects become the primary focus of this report, com-
paring PXT (makecode), C/C++(micro:bit runtime)
and MicroPython, by conducting a variety of tasks
interacting with the hardware.

PXT provides the highest level of interaction for pro-
gramming the micro:bit using a drag and drop block
interface. Blocks are then converted into C++ and
use drivers provided by the micro:bit runtime to cre-
ate a HEX file to be flashed. Therefore, the power
consumption should be similar to that of 'pure C++'
for the tasks undertaken.

The micro:bit runtime provides the lowest level of
interaction for programming the micro:bit (beyond
Assembler) in C/C++. The micro:bit runtime also
supports most of the higher level micro:bit languages
such as Microsoft Touch Develop, JavaScript and as
previously mentioned, PXT.

MicroPython, mostly has it’s own implementations
of drivers but for some component interaction it uses
the micro:bit DAL.

1 Methodology and Setup

In order to test each software component effectively,
a series of common tasks must be developed that can
both isolate and capture the power consumption for
a given software component. The outcome of each
task should be a single reading showing the power
consumption in milliamps (mA). Multiple tasks may
have to be produced in order to ensure data valid-
ity.

Figure 1 illustrates the setup of the power consump-
tion test apparatus, the state of which remains con-

1

stant throughout.

Figure 1: Test Setup

The specific tasks created can be found in their corre-
sponding sections along with details of why they are
chosen, how they are implemented and any revised
setup aspects. Each component is also accompanied
by results of the tasks and analysis of any interesting
results found.

All code is open source, commented and structured
such that each task is an individual program, assist-
ing in the isolation aspect of the testing and reusabil-
ity. In the interest of isolation, an additional 'flavour'
of the micro:bit runtime can be tested containing
the minimal device drivers needed to perform a test.
This 'lite' version of the runtime will be documented
for each test by noting the software components re-
moved. This is done by removing the initialisation
of the objects in Microbit.cpp and declaration in Mi-
crobit.h. An example would be a program perform-
ing just arithmetic operations, which would not have
components such as the radio and display initialised.
For ease of documentation this will be described as
its own language named 'micro:bit Lite'.

Algorithms chosen to test a given component will ev-
idently vary in syntax for each language, however, it
will functionally and structurally attempt to be iden-
tical.

Due to the CPU and other hardware components
running slightly more power efficient after the initial
boot, the multimeter current reading takes approxi-
mately 5 minutes to converge for most tasks. There-
fore, the duration of each test is 5 minutes with read-
ings taken in 30 second intervals from which an av-
erage in calculated (mean). This mean value is then
used as a comparison against other languages. The
measuring process may have to be adapted for some
task that provide a 'noisy reading' by using the in-
built MIN/MAX function on the multimeter, which
provides an average along with a minimum and max-
imum value.

2 Testing Specifications

See below a list of the specifications of the equipment
used for each test. Detailed specifications of each
individual test can be found in their corresponding
sections.

• MacBook Pro (Retina, 15-inch, Mid 2014) 2.8
GHz Intel Core i7

• VM running Ubuntu 16.04 64-bit (virtualBox)

• Fluke 287 True RMS Multimeter

• Aim-TTi Ex354RT Triple Power Supply (3 Volts)

• Stock micro:bit USB cable (5V 100)

• Test Leads CAT I, 1mm2 conductor size

• micro:bit Firmware 0234

• uFlash 1.0.8

The build environment used can be downloaded from:

www.github.com/carlosperate/microbit-dev-env

3 CPU

The CPUs power consumption can be defined as:

PCPU = Pstatic + Pshort−circuit + Ptransition

Pstatic is sub-threshold conduction and tunnelling cur-
rent, both of which are the main causes of leakage
within a CPU. Tunnelling power dissipation is an on-
going issue in silicon chip development with the desire
to make them as small as possible. However, this re-
port will not investigate this as a factor as it is just
a function of the supply voltage.

Pshort−circuit and Ptransition are forms of dynamic dis-
sipation which is a function of the activity being un-
dertaken. Therefore, the activity becomes an area of
interest for the testing of this component and the in-
dependent variable which is the case for most of the
tests in this report.

Three tasks can be undertaken for the testing of this
component; idle mode (sleep), infinite while loop and
generating Fibonacci numbers. The idle mode con-
sists of putting the micro:bit into sleep in its respec-
tive language. Using the DAL this is simply the
uBit.sleep() function which deschedules the current
fiber and perform a power efficient concurrent sleep

2

operation. The same function is also used by PXT
via the pause() function, whereas MicroPython uses
it’s own sleep() function.

The infinite while loop is simply a while loop contain-
ing a small amount of arithmetic operations that it
does so continuously, for the purpose of wasting CPU
cycles.

A recursive Fibonacci algorithm will allow the test-
ing of the CPUs power consumption when having to
perform memory operations. Due to MicroPython
occupying a large amount of RAM it leaves a very
small stack space. As a result, the Fibonacci algo-
rithm is only able to generate up to the 6th sequence
of the series. Therefore, all other environments also
have to be tested to the same value

Finding the Maximim Fibonacci Sequence

Other languages, however, are able to generate a
greater number in the series because of the increase
in the available RAM size. An interesting compari-
son can be found by removing the Bluetooth stack,
increasing the amount of available SRAM. The re-
moval of the stack is done by setting the
MICROBIT BLE ENABLED constant to 0.

The DAL with and without the bluetooth stack have
to be stoped after generating the 43rd number in the
sequence due to the algorithms exponential time com-
plexity, making the test an unfeasible duration. To
estimate what number would cause a crash the fol-
lowing pseudocode can be used:

void fakeF ibonacc i (i n t x){
s e r i a l . send(++x , SPINWAIT) ;
f akeF ibonacc i (x) ;

}

Regardless of the value of x this function recursively
calls itself, incrementing and passing x on each call,
acting as a stack frame counter. The serial send-
ing should also guarantee that the value has been
sent before proceeding with the recursive call, hence
SPINWAIT.

In order to find the maximum amount of stack frames
the detection of a crash needs to be established. A
stack overflow is likely to occur when trying to find
this value which should be indicated by the display
showing “[sadface]030” meaning a corruption has been
detected in the heap. However, due to the micro:bit
having no dedicated MMU this may go undetected,
so the results should only be classed as valid when

“[sadface]030” is displayed. A series of tests demon-
strated that providing only a raw integer with no cas-
ing or appending of a character to the serial send
function produces a valid result most of the time, as
shown in the pseudocode below.

Passing in the value 0 to the function when the stack
is removed returns 262 as the last valid value received.
When the stack is included this value drops to 255 as
expected. These values do not translate directly to
the recursive Fibonacci algorithm as it is likely to
require larger stack frames because of its two param-
eters and more operations to store.

Given that C++ and most languages are evaluated
left to right, the first recursive call of fibonacci will
be fully evaluated before the right most, as shown
below:

re turn fibonacci(x-1) + fibonacci(x-2);

As a result, given a number x the function will have
a maximum recursion depth count of x-1, as the first
entry is non-recursive. Therefore, the approximate
maximum Fibonacci sequence that can be found with
and without the bluetooth stack enabled is 256 and
263 respectively. Practically, these sequences are not
achievable as the value returned would far exceed any
standard number type, meaning a custom type would
have to be defined, requiring more RAM and then be
included in the function parameters further increas-
ing the size of a stack frame.

Results

Figure 2 shows the results of these tasks, with the
DAL Lite initialising just the scheduler and message
bus.

Excluding the DAL Lite, all languages perform al-
most identically from one another. PXT and DAL
are expected to perform the same because of PXTs
use of the DAL, however, MicroPython seems to use
an almost identical process to perform it’s sleep. DAL
Lite outperforms all other environments in all tasks,
with on average using 170% less power when in sleep
mode.

The DAL with all components initialised has the high-
est power consumption but not as significantly so,
when compared to MicroPython and PXT.

It can also be said that C++ based languages per-
form better at Fibonacci, this is most likely due to
it 'running closer to the hardware' with less layers

3

Figure 2: CPU Power Consumption

of abstraction, potentially allowing for more efficient
operations. One consideration could be to use tail re-
cursion optimisation which can implemented by the
GCC compiler using a flag.

4 Accelerometer

The micro:bit makes use of the MMA8653FC Ac-
celerometer. This component is separate from the
CPU and connected via the internal BUS of the mi-
cro:bit. Communication is performed by I2C, which
is isolated and tested in Section 7. The common fea-
ture used in an Accelerometer API is to retrieve the
cartesian coordinates, the process of doing so is illus-
trated in Figure 3.

Figure 3: Accelerometer Reading Process

Fortunately, this process is repeated every time a re-
quest is made from the API to get the X, Y or Z
position, creating a convenient layer of abstraction.
For the testing of this component three tasks can be
undertaken; the reading of all three positions in a
while loop each of which are three separate API calls,

an individual read of the X position in a while loop
and a single call to retrieve the x position (X Isolated
(Max)).

One purpose of conducting two while loop tasks is to
discover if it is worth including a readXYZ() function
as a readX() (or X or Z) already captures this data
in the process shown in Figure 3, potentially having
power consumption benefits.

The reasoning for testing a single call to retrieve the
x position is to activate the accelerometer, which will
cause continuous updates at the sample rate in the
background using an idle thread. Because of the sam-
pling period being so small, it becomes hard to record
this data in 30 second intervals (noise), as a result
the MIN/MAX feature can be used, with the aver-
age, minimum and maximum value recorded. The
MIN/MAX feature should be used after 5 minutes of
the micro:bit being active to allow the thermal effects
to pass.

Figure 4: Accelerometer Power Consumption

Results

Figure 4 shows the results of the Accelerometer tests
overlaid with the Idle (sleep) data shown in Figure 2.
The the sleep overlay provides an insight into the ad-
ditional power the micro:bit is using due to the task.
Despite the retrieving of the X,Y and Z individually
is has almost the equivalent power consumption us-
age as just getting one position (X Read), meaning
there is no real need for a readXYZ() function.

To analyse the tasks power consumption further, let
the purple area of the bar chart be denoted as Pcomponent =
Ptask − Pidle. The environment which uses the least
Pcomponent is PXT for both tasks, potentially meaning

4

that it is more efficient at reading the accelerometer.
Alternatively, it’s idle state is poor and may be run-
ning part of the processes already in place to run the
accelerometer.

Task Environment Pcomponent

XYZ Read

DAL 7.90
DAL Lite 10.29
MicroPython 9.39
PXT 8.37

X Read

DAL 7.92
DAL Lite 10.27
MicroPython 9.40
PXT 8.34

X Isolated (Max)

DAL -0.072
DAL Lite 0.725
MicroPython -0.022
PXT 0.054

Table 1: Pcomponent Accelerometer

Table 1 breaks down Pcomponent reaffirming that there
is no need for an readXYZ() function. Despite Mi-
croPython having a comparatively poor idle state,
when looking at the DAL Lite, it has one of the high-
est Pcomponent values. This is primarily due to Mi-
croPython creating it’s own runtime environment as
well as it’s high level abstractions, which come at a
cost of power consumption.

It is also worth noting that the DAL Lite had the
scheduler, I2C, message bus and accelerometer en-
abled.

X isolated demonstrates that the activation of the ac-
celerometer uses very little power consumption on av-
erage. The maximum value should be used (peak) as
the power consumption measurement, as this is most
likely when the accelerometer is being updated. The
Pcomponent values for X under isolation are marginal
and should not be treated as significant, except for
DAL Lite. Because of the 'bare-bones' nature of DAL
Lite it reduces the noise in the data compared to
other languages, giving a true reflection of the com-
ponents power consumption. Part of the issue with
testing the X Read in a while loop is the drown-
ing of the CPU with such commands, increasing the
power consumption, however, this is a common use
case for such a function and should therefore also be
tested.

5 Display

The display of the micro:bit is a 5x5 surface mount
LED matrix, making it the second most 'power-hungry'
component(s) on the board. The LED matrix is also
capable of becoming a light sensor, as LEDs can also
be used as a photodiode by changing the direction
of the current flow. To reduce the amount power
consumed the display strobes each LED at a flicker
fusion rate such that it goes undetected to the human
eye.

Three tasks can be undertaken to test this compo-
nent; all LEDs on (All HIGH), a single LED on (Sin-
gle HIGH) and calling the light sense function in a
while loop (Sensing).

Results

Light sensing is not available in MicroPython and is
therefore not included in the results.

Figure 5: Display Power Consumption

Figure 6 shows the results with the idle (sleep) power
consumption overlaid. As expected DAL Lite out-
performs all other environments in each test, as it
only has the display, message bus and scheduler ini-
tialised.

The performance of the other three environments demon-
strates that there is no advantageous aspect to their
display usage.

The standard deviation of all four environments
Pcomponent’s when ALL HIGH is 0.08, likewise, when
a single LED is high, the standard deviation is 0.09.
Because of the small amount of deviation the cost of
a single LED could potentially be calculated.

The average Pcomponent for All HIGH is:

5

28.635mW
28.635/25 = 1.1454mW per LED

The average Pcomponent for Single HIGH is 3.416mW
which demonstrates that the workings of the display
are as not as elementary as they appear.

The standard deviation between the remaining three
languages for the light sensing is 0.88, again demon-
strating that there is little discrepancy between their
resource usage.

6 Magnetometer

The magnetometer, like the accelerometer is linked to
the I2C Bus. The magnetometer is accessible through
all the languages via a Compass API. The compass
makes use of the accelerometer to reduce inaccuracies
and will therefore be included in the DAL Lite along
with the storage, I2C, message bus, accelerometer,
compass and the compass calibrator.

The retrieving of the magnetic field strength both
with and without a while loop can be tested, as the
component works in a similar data push nature to
the accelerometer. The remaining software compo-
nents used by the compass are tested in previous or
subsequent sections.

Due to the sensitivity of the magnetometer and phys-
ical environment that the test is conducted in, the
methodology described in Section 1 where data is
recorded in 30 second intervals can no longer be ap-
plied. This is due to electromagnetic noise in the
environment causing the multimeters reading to be-
come sporadic, as a result the MIN/MAX feature
should be used.

Results

Figure 6 illustrates this reading. The field strength
in isolation seems to show that MicroPython may not
perform data push as it is 0.001mA different from its
Idle (sleep) state, however, it may also be that Mi-
croPython is more efficient at this task. Although, it
could be expected that the magnetometer would op-
erate at the same power consumption level as the ac-
celerometer due to its similar underlining operations,
the compass also requires the accelerometer and the
compass calibrator.

The order of power consumption efficiency is the same
as the accelerometer, which is understandable given

Figure 6: Magnetometer Power Consumption

that both are preforming similar operations to as-
certain a value via I2C. However, the magnetometer
as a hardware component does seem to require more
power consumption.

7 I2C

I2C is a short distance master-slave(s) communica-
tion protocol often used for intra-board communi-
cation between the CPU and low speed peripher-
als, such as EEPROM (persistent storage). I2C is
lightweight in the sense that it need not concern it-
self with security nor error checking.

I2C across all languages consists of a read and write
function which can be tested, with some allowing
more parameters by function overloading. The APIs
allow configuration of the SDA and the SCL which
by most users of the micro:bit will be set to pins,
however, this testing uses the accelerometer, mean-
ing that no pins are specified.

Addressing Schemes

It is worth noting the difference in addressing schemes
across the languages. The DAL* uses 8-bit address-
ing (int) with the LSB as a flag forcing it to a 0
for write and a 1 for read. Whereas, MicroPython
and PXT use 7-bit addressing, where the API will
concatenate a new LSB to the passed address. For
example the accelerometer is located at the following
address:

DAL = 0x3A = 00111010

6

MicroPython/PXT = 0x1D = 00011101

The MicroPython/PXT address is the DAL address
but shifted one binary position to the right for the
concatenation of the read/write flag, whereas the DAL
has left the LSB blank and ready to be forced to the
appropriate read/write flag (1 or 0) by the API.

Writing

Fortunately, the addressing of a devices register when
writing is less complex. For MicroPython and the
DAL the process is very similar. The address of the
accelerometer is first specified using the correspond-
ing addresses above, followed by passing a byte/char
array in the form of [register address, value to be writ-
ten]. Writing cannot be performed using the PXT as
the write block does not provide a way of addressing
the internal I2C BUS devices, a devices register and
a value in one block. The list of available registers
and other accelerometer information can be found in
the MMA8653FC Data Sheet.

The writing task consists of writing to the Y-axis
offset adjust register (OFF Y) a value, followed by
reverting it back to its original value repeated con-
tinuously (while loop). However, to write to this
register the control registers must first be altered
(CTRL REG1).

Reading

The reading of a devices register first consists of a
write specifying the register that the data is going to
be read from followed by a read. The repeat boolean
must be set to true clearing the message end flag,
and ensuring that the subsequent read command will
receive the correct data and not a series of 1’s (SDA
default is high). As previously implied, the read com-
mand is then called passing a buffer or assigning a
variable in PXT for the data to be read into. This
process is applicable across all languages.

The reading task involves the retrieval of the data
stored in the Back/Front, Z-Lock Trip threshold reg-
ister (PL BF ZCOMP) continuously, containing the
value 0x44. The DAL Lite for this test initialised the;
scheduler, message bus and I2C.

Results

Figure 7 shows the results of these tasks. As ex-
pect the reading of data had a near identical perfor-
mance to that of the magnetometer while loop task
(Field Strength), but not the accelerometer, which

Figure 7: I2C Power Consumption

may be due better caching through the accelerome-
ter APIs.

The reading and writing operations are almost iden-
tical in terms of their power consumption, except for
MicroPython which uses 0.296mW less when writing.
The DAL Lite for this section initialised the sched-
uler, message bus and I2C.

8 Radio

The radio on the micro:bit is integrated into the CPU
as a 2.4GHz radio module. It is primarily designed for
Bluetooth Low Energy (BLE) but can also perform
micro:bit to micro:bit communication. This test con-
tains three tasks; sending, receiving and enabled.

The DAL Lite contained the following initialisations;
message bus, scheduler and radio. Also the MICRO-
BIT BLE ENABLED has to be set to 0, for the API
to work.

Results

Figure 8: Radio Power Consumption

7

Figure 8 demonstrates the outcome of this test. What
is evident is the similarity of power usage of each
language for each task and overall. The radio being
enabled almost completely 'drowns out' the cost of
sending and receiving. Moreover, despite both the
enabled and receive tasks going into continuous sleep
after an initial setup it continues to use the same
amount of power.

Cleary these results demonstrate that the most 'power-
hungry' component on the micro:bit is the radio, and
that a more power efficient protocol using the radio
module would very beneficial.

9 Bluetooth

Bluetooth Low Energy (BLE) is a protocol included
in the runtime firmware and is therefore available on
PXT. However, due to MicroPython using its own
runtime environment on the micro:bit, the BLE stack
uses up 12 Kilobytes of RAM making it too large for
it to be included as an API.

The DAL Lite for this component includes the stor-
age, message bus, scheduler, display, bleManager and
ble.

Results

Figure 9: Bluetooth Power Consumption

Although, BLE does use a considerable amount of
RAM, Figure 9 demonstrates that it is well worth the
cost if the user wants to make a power efficient ap-
plication. For sending, on average there is a 198% de-
crease is power consumption, and reading 792.51%.

The pairing task consists of the micro:bit in its broad-
cast mode, awaiting for a device to attempt to pair
with it. This value is high due to fact that 17 LEDs
are on as a visualisation that pairing mode is active,

but still less than any task undertaken on the ra-
dio. The test begins when the pairing visualisation is
shown.

The sending and receiving measurements only start
to be recorded once a device is paired.

The pairing process used an iOS device running nRF
Connect. The sending and receiving was done through
the UART service.

10 Buttons

The micro:bit come with three push buttons; reset,
A and B. The reset button is not tested as the power
consumption is too hard to measure and not partic-
ularly useful data. Button A and B are buttons that
all the environments can access and are often used
in micro:bit projects for user interaction. All envi-
ronments provide a high level API allowing the users
to forget about complexities such as switch debounc-
ing.

For this component, two tasks involving the detec-
tion of a button being pressed; loop and event are
undertaken. The loop involves polling the status of
the button to see if it has been pressed, which is
a common although not recommend use case. The
event registers an interest in a button being pressed
and until it has been detected enters a power efficient
sleep.

The DAL Lite for these tasks includes the message
bus, scheduler, buttonA and buttonB.

Results

Figure 10 highlights these results with the event method
clearly outperforming the loop and almost matching
idle performance.

With the micro:bit PXT being the first exposure to
programming for some, perhaps a consideration could
be made to prompt the user that they could use an
event, as it could have up to a 162% decrease in power
consumption.

11 Serial

Serial communication is commonly used on the mi-
cro:bit through USB as a method of retrieving the
current state of the micro:bit. It can also be used

8

Figure 10: Buttons Power Consumption

through the PINs via a redirect command in the DAL
and PXT, and by changing the UART init parame-
ter in MicroPython. This is useful as the power mea-
surement would become an issue if connected by a
powered USB.

The DAL Lite includes the initialisation of the serial,
message bus and scheduler. Pins 0 and 1 are set as
the transmitter and receiver respectively.

Results

Figure 11 illustrates the results of this test with the
DAL, DAL Lite and MicroPython almost identical in
both tasks.

Figure 11: Serial Power Consumption

One interesting observation is the PXT when read-
ing. It uses significantly more power despite is us-
ing the DAL API. When the DAL is reading in a
while loop and no data is in the rx buffer the fiber
goes into sleep (SYNC SLEEP), which is why it al-
most matches the idle power consumption (sleep).
Although PXT should do the same, this does not
seem to be the case, and behaves as the
SYNC SPINWAIT describes by locking up the pro-
cessor. The same can also be said for MicroPython,

which has similar behaviour for both send and re-
ceive.

12 Summary

The data that has been collected should highlight
areas of improvement in terms of power consump-
tion and what software components excel compared
to others for a particular task. All data collected and
tasks (code) have been structured and documented
for reusability, such that future hardware iterations
can be easily recorded and compared, providing the
API naming convention remains the same.

The five worst performing API components when com-
pared to other languages performing the same task
are:

• MicroPython Serial Reading (82%)

• MicroPython Serial Receive (50%)

• PXT Serial Receive (48%)

• PXT Button Event (27.40%)

• PXT Button Event (27.40%)

Figure 12 shows a breakdown of each task for each
language and how it compares to the average for a
given task. This graph assists in finding the best and
worst performers for a given task.

Also, attached to this report is a table of the tasks
for each language with how much battery life they use
(hours) when powered by two AAA batteries, calcu-
lated by the data sets captured in this report. How-
ever, some of the adverse results are due to simple
design choices such as MicroPythons serial read not
sleeping when the buffer is full.

One aspect that proves the validity of the data is the
similarity of power consumption between the DAL
and PXT throughout the whole testing process. A
highly beneficial feature that could be considered by
PXT and DAL is the initialisation of modules in the
hex file only if they are used (i.e. DAL Lite).

Overall, the method of measuring the power con-
sumption described in Figure 1 proved to be an ef-
fective. However, more isolation could take place us-
ing sense resistors at the surrounding power sources
to given components, to help further target areas

9

of improvement for future hardware iterations and
APIs.

F
ig

u
re

12
:

P
er

fo
rm

an
ce

X
-r

ay

10

